Topical Application of TT-10 Ameliorates Impaired Wound Healing

Author:

Liu Yangdan1,Ho Chiakang1,Wen Dongsheng1,Zhou Zhiyuan2,Tsai Tingyu1,Sun Jiaming1,Liu Yuxin1,Gao Ya1,Li Qingfeng1,Zhang Yifan1

Affiliation:

1. Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

2. Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Background: In recent decades, chronic wounds have become an increasingly significant clinical concern due to their increasing morbidity and socioeconomic toll. However, there is currently no product available on the market that specifically targets this intricate process. One clear indicator of delayed wound repair is the inhibition of re-epithelialization. Yes-associated protein (YAP), which is a potential focal point for tissue repair and regeneration, has been shown to be prominent in several studies. In this context, we have identified the pharmacological product TT-10, which is a YAP activator, as a potential candidate for the treatment of various forms of chronic wounds. Methods: The role of TT-10 in regulating YAP activity and subcellular localization was determined by western blotting and immunofluorescence staining. The effect of TT-10 on the biological functions of keratinocytes was assessed by proliferation, wound healing, and apoptosis assays. The impairment of YAP activity in chronic wounds was measured in human and mouse tissues. The in vivo efficacy of TT-10 was examined by gross examination, H&E staining, and measuring wound areas and gaps in normal, diabetic, and ischemic wounds. Results: Our findings suggest that TT-10 facilitates the nuclear transport of YAP, consequently increasing YAP activity, which in turn increases the proliferation and migration of keratinocytes. Moreover, we showed that intracutaneous injection of TT-10 along the wound periphery promoted re-epithelization via YAP activation in the epidermis, culminating in accelerated wound closure in several chronic wound healing models. Conclusions: Our research highlights the potential of TT-10 to treat chronic wounds, which is a persistent challenge in tissue repair.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3