Identification of Drug Compounds for Capsular Contracture Based on Text Mining and Deep Learning

Author:

Lu Yeheng1,Chen Zhiwei2,Pan Yuyan1,Qi Fazhi1

Affiliation:

1. Department of Plastic Surgery, Zhongshan Hospital

2. Big Data and Artificial Intelligence Center, Zhongshan Hospital, Fudan University.

Abstract

Background: Capsular contracture is a common and unpredictable complication after breast implant placement. Currently, the pathogenesis of capsular contracture is unclear, and the effectiveness of nonsurgical treatment is still doubtful. The authors’ study aimed to investigate new drug therapies for capsular contracture by using computational methods. Methods: Genes related to capsular contracture were identified by text mining and GeneCodis. Then, the candidate key genes were selected through protein-protein interaction analysis in Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape. Drugs targeting the candidate genes with relation to capsular contracture were screened out in Pharmaprojects. Based on the drug-target interaction analysis by DeepPurpose, candidate drugs with highest predicted binding affinity were obtained eventually. Results: The authors’ study identified 55 genes related to capsular contracture. Gene set enrichment analysis and protein-protein interaction analysis generated eight candidate genes. One hundred drugs targeting the candidate genes were selected. The seven candidate drugs with the highest predicted binding affinity were determined by DeepPurpose, including tumor necrosis factor alpha antagonist, estrogen receptor agonist, insulin-like growth factor 1 receptor, tyrosine kinase inhibitor, and matrix metallopeptidase 1 inhibitor. Conclusion: Text mining and DeepPurpose can be used as a promising tool for drug discovery in exploring nonsurgical treatment to capsular contracture. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.

Funder

National Nature Science Foundation of China

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3