Reliable Prediction of Discharge Disposition Following Cervical Spine Surgery With Ensemble Machine Learning and Validation on a National Cohort

Author:

Feng Rui1,Valliani Aly A.1,Martini Michael L.1,Gal Jonathan S.2,Neifert Sean N.3,Kim Nora C.3,Geng Eric A.4,Kim Jun S.4,Cho Samuel K.4,Oermann Eric K.356,Caridi John M.7

Affiliation:

1. Neurosurgery

2. Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai

3. Department of Neurosurgery, New York University Langone Medical Center

4. Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai

5. Department of Radiology, New York University Langone Medical Center

6. Center for Data Science, New York University Langone Medical Center, New York, NY

7. Department of Neurosurgery, University of Texas Health Science Center, Houston, TX

Abstract

Study Design: A retrospective cohort study. Objective: The purpose of this study is to develop a machine learning algorithm to predict nonhome discharge after cervical spine surgery that is validated and usable on a national scale to ensure generalizability and elucidate candidate drivers for prediction. Summary of Background Data: Excessive length of hospital stay can be attributed to delays in postoperative referrals to intermediate care rehabilitation centers or skilled nursing facilities. Accurate preoperative prediction of patients who may require access to these resources can facilitate a more efficient referral and discharge process, thereby reducing hospital and patient costs in addition to minimizing the risk of hospital-acquired complications. Methods: Electronic medical records were retrospectively reviewed from a single-center data warehouse (SCDW) to identify patients undergoing cervical spine surgeries between 2008 and 2019 for machine learning algorithm development and internal validation. The National Inpatient Sample (NIS) database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for external validation of algorithm performance. Gradient-boosted trees were constructed to predict nonhome discharge across patient cohorts. The area under the receiver operating characteristic curve (AUROC) was used to measure model performance. SHAP values were used to identify nonlinear risk factors for nonhome discharge and to interpret algorithm predictions. Results: A total of 3523 cases of cervical spine fusion surgeries were included from the SCDW data set, and 311,582 cases were isolated from NIS. The model demonstrated robust prediction of nonhome discharge across all cohorts, achieving an area under the receiver operating characteristic curve of 0.87 (SD=0.01) on both the SCDW and nationwide NIS test sets. Anterior approach only, age, elective admission status, Medicare insurance status, and total Elixhauser Comorbidity Index score were the most important predictors of discharge destination. Conclusions: Machine learning algorithms reliably predict nonhome discharge across single-center and national cohorts and identify preoperative features of importance following cervical spine fusion surgery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3