Insights into spaceflight-associated neuro-ocular syndrome with review of intraocular and orbital findings

Author:

Milner Dallin C.1,Subramanian Prem S.1234

Affiliation:

1. Sue Anschutz-Rodgers University of Colorado Eye Center and Department of Ophthalmology

2. Department of Neurology

3. Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado

4. Department of Surgery (Division of Ophthalmology), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Abstract

Purpose of review Spaceflight-associated neuro-ocular syndrome (SANS) remains a phenomenological term, and advances in ophthalmic imaging as well as new insights from ground-based experiments have given support to new theories of how SANS develops and what may be done to counter it. Recent findings SANS has been postulated to arise from elevated intracranial pressure (ICP) during long-duration spaceflight (LDSF). However, recent work has shown that acute microgravity exposure does not increase ICP, and the effect of cephalad fluid shifts on ICP in microgravity remain unknown. In addition, structural imaging of the retina and optic nerve show changes after LDSF that are distinct from findings in terrestrial patients with elevated ICP. Since astronauts have not reported symptoms that would be expected with chronic ICP elevation, new theories that orbital and/or intracranial venous pressure may be the primary contributors to the development of SANS. Summary Research has been filling knowledge gaps that exist regarding the cause(s) of SANS, and these advances are crucial steps in the effort to design countermeasures that will be required before human deep space exploration missions can be undertaken.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Omics Studies of Tumor Cells under Microgravity Conditions;International Journal of Molecular Sciences;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3