Myocardial alterations following traumatic hemorrhagic injury

Author:

Simpson Rebecca,Praditsuktavorn Banjerd,Wall Johanna,Morales Valle,Thiemermann Christoph,Tremoleda Jordi L.,Brohi Karim

Abstract

BACKGROUND Cardiac dysfunction (CD) has emerged as a key contributor to delayed organ failure and late mortality in patients surviving the initial traumatic hemorrhagic response. Inflammatory processes are implicated in the initial stages of this CD; however, downstream pathways leading to a characteristic rapid fall in stroke volume and cardiac output are not yet fully defined. Currently, no cardioprotective treatments are available. We investigated the role of myocardial oxidative stress in the pathogenesis of CD associated to traumatic hemorrhagic injury, and its related metabolomic profile. METHODS Ex vivo tissue from a 3-hour murine model of pressure-controlled trauma hemorrhagic shock (THS) was analyzed. Animals were randomized to echocardiography-guided crystalloid fluid resuscitation or a control group (sham: cannulation and anesthesia only, or naïve: no intervention). Trauma hemorrhagic shock and naïve samples were assessed by immunohistochemistry for nuclear 8-hydroxy-2′-deoxyguanosine expression as a marker of oxidative stress. Metabolomic analysis of THS and sham group tissue was performed by LC-MS. RESULTS 8-Hydroxy-2′-deoxyguanosine expression across the myocardium was significantly higher following THS injury compared to naïve group (33.01 ± 14.40% vs. 15.08 ± 3.96%, p < 0.05). Trauma hemorrhagic shock injury significantly increased lysine (p = 0.022), and decreased aconitate (p = 0.016) and glutamate (p = 0.047) in the myocardium, indicating activation of a catabolic metabolism and oxidative stress response. CONCLUSION We confirm the acute development of oxidative stress lesions and altered cardiac energy metabolism following traumatic hemorrhage injury, providing insight into the relationship between inflammatory damage and impaired cardiac contractility. These findings may provide targets for development of novel cardioprotective therapeutics aiming to decrease late mortality from trauma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3