Exploring the molecular mechanism of Nux Vomica in treating ischemic stroke using network pharmacology and molecular docking methods

Author:

Zhang Chengdong1ORCID,Gai Jialin2,Fan Xiaohua3,Lei Junfang2,Tang Jiqin2ORCID

Affiliation:

1. School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China

2. School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China

3. Department of Rehabilitation Medicine, Shandong Provincial Hospital, Jinan, Shandong, China.

Abstract

Background: Nux Vomica (NV) has the effects of dredging collaterals, relieving pain, dispersing knots, and detumescence, and has a verified effect in treating ischemic stroke (IS), but its molecular mechanism for treating IS remains unclear. In this study, network pharmacology and molecular docking methods were adopted to explore the pharmacological mechanism of NV in treating IS. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the HERB database were searched to screen the active components and targets of NV. IS disease targets were retrieved from the DisGeNET, DrugBank, GeneCards, and Therapeutic Target Database. Venn diagram and intersection targets were obtained from the Venny website. Subsequently, the STRING database was employed to analyze the interrelationship of the intersection targets. Metascape database was used for Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of intersection targets. Furthermore, Cytoscape was employed to plot a drug-component-target network, and other networks, and molecular docking method was adopted to predict the effective components and targets of NV for treating IS. Results: A total of 14 active compounds and 59 targets of NV were screened, of which 35 targets were related to IS. Stigmasterol, brucine, isobrucine, isostrychnine N-oxide (I), (S)-stylopine, icaride A, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one were the main active ingredients, and SLC6A4, NR3C1, SLC6A3, HTR3A, CHRNA7, MAOA, PTGS2, ESR1, catalase (CAT), ADRB2, and AR were the core targets. Molecular docking shows that these compounds bind well to the core targets. In addition, the treatment of IS by NV may mainly involve salivary secretion, serotonergic synapse, calcium signaling pathway, cGMP-PKG signaling pathway, and neuroactive ligand-receptor interaction. Conclusions: This study revealed that NV exerts its therapeutic effect on IS through multi-component, multi-target, and multi-pathway, which provides a basis for clinical treatment of IS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3