Bioinformatic analysis of biological changes involved in pelvic organ prolapse

Author:

Wang Wei Guo1ORCID,Chen Zhang Sen Di1,Sun Ji1,Yang Chun Mei1,He Hong Bo1,Lu Xian Kun2,Wang Wei Yuan3

Affiliation:

1. Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

2. Science and Technology Department of Sichuan Province, Chengdu, Sichuan, China

3. Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.

Abstract

The molecular mechanisms involved in the pathogenesis of pelvic organ prolapse (POP) remain unclear. This study aimed to identify key molecules involved in the pathogenesis and progression of POP. Differentially expressed genes (DEGs) were identified based on gene expression data extracted from the GSE53868, GSE28660, and GSE12852 datasets in the gene expression omnibus database. The R software was used for data mining, and gene ontology functional annotation and Kyoto encyclopedia of genes and genomes enrichment analyses were performed to explore the biological functions of DEGs. A protein–protein interaction network (PPI) was constructed using the Search Tool for the Retrieval of Interacting Genes database, and hub genes were identified by the Cytoscape plug-in cytoHubba. In addition, the CIBERSORT algorithm was used to analyze and evaluate immune cell infiltration in POP tissues. A total of 92 upregulated DEGs were identified and subjected to enrichment analysis. Gene ontology analysis revealed that these DEGs were associated with response to hormones, positive regulation of cell death, collagen-containing extracellular matrix, and extracellular matrix. Kyoto encyclopedia of genes and genomes pathway analysis showed that the upregulated genes were mainly enriched in the phosphatidylinositol 3-kinase–AKT signaling pathway. The PPI network was structured. Nodes in the PPI network were associated with structural molecular activity and collagen-containing extracellular matrix. A total of 10 hub genes were identified, namely, CDKN1A, IL-6, PPARG, ADAMTS4, ADIPOQ, AREG, activating transcription factor 3, CCL2, CD36, and Cell death-inducing DNA fragmentation factor-like effector A. Furthermore, patients with POP were found to have a higher abundance of CD8-positive T cells in the 3 gene expression omnibus datasets. The abundance of CD8-positive T cells was negatively correlated with that of follicular helper T cells (Pearson correlation coefficient = −0.34, P < .01) or gamma delta T cells (Pearson correlation coefficient = −0.33, P < .01). But was positively correlated with that of M2 macrophages (Pearson correlation coefficient = 0.35, P < .01) and activated memory CD4 T cells (Pearson correlation coefficient = 0.34, P < .01). Altogether, PPARG, ADAMTS4, ADIPOQ, AREG, CD36, and Cell death-inducing DNA fragmentation factor-like effector A genes were discovered in the POP process for the first time, which should be intensively investigated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3