Machine learning-based metabolism-related genes signature, single-cell RNA sequencing, and experimental validation in hypersensitivity pneumonitis

Author:

He Jie123ORCID,Wang Bo123,Chen Meifeng123,Song Lingmeng14,Li Hezhi15

Affiliation:

1. Clinical Medical College of Chengdu Medical College, Chengdu, China

2. Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China

3. Key Laboratory of Geriatric Respiratory Diseases of Sichuan Higher Education Institutes, Chengdu, China

4. Medical Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China

5. Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.

Abstract

Metabolism is involved in the pathogenesis of hypersensitivity pneumonitis. To identify diagnostic feature biomarkers based on metabolism-related genes (MRGs) and determine the correlation between MRGs and M2 macrophages in patients with hypersensitivity pneumonitis (HP). We retrieved the gene expression matrix from the Gene Expression Omnibus database. The differentially expressed MRGs (DE-MRGs) between healthy control (HC) and patients with HP were identified using the “DESeq2” R package. The “clusterProfiler” R package was used to perform “Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses” on DE-MRGs. We used machine learning algorithms for screening diagnostic feature biomarkers for HP. The “receiver operating characteristic curve” was used to evaluate diagnostic feature biomarkers’ discriminating ability. Next, we used the “Cell-type Identification by Estimating Relative Subsets of RNA Transcripts” algorithm to determine the infiltration status of 22 types of immune cells in the HC and HP groups. Single-cell sequencing and qRT-PCR were used to validate the diagnostic feature biomarkers. Furthermore, the status of macrophage polarization in the peripheral blood of patients with HP was determined using flow cytometry. Finally, the correlation between the proportion of M2 macrophages in peripheral blood and the diagnostic biomarker expression profile in HP patients was determined using Spearman analysis. We identified a total of 311 DE-MRGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that DE-MRGs were primarily enriched in processes like steroid hormone biosynthesis, drug metabolism, retinol metabolism, etc. Finally, we identified NPR3, GPX3, and SULF1 as diagnostic feature biomarkers for HP using machine learning algorithms. The bioinformatic results were validated using the experimental results. The CIERSORT algorithm and flow cytometry showed a significant difference in the proportion of M2 macrophages in the HC and HP groups. The expression of SULF1 was positively correlated with the proportion of M2-type macrophages. In addition, a positive correlation was observed between SULF1 expression and M2 macrophage proportion. Finally, we identified NPR3, GPX3, and SULF1 as diagnostic feature biomarkers for HP. Further, a correlation between SULF1 and M2 macrophages was observed, providing a novel perspective for treating patients with HP and future studies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3