The mechanism of dehydroandrographolide inhibiting metastasis in gastric cancer based on network pharmacology and bioinformatics

Author:

Luo Yan-hai1,Yuan Ling2,Lu Dou-dou3,Yang Ya-ting3,Yang Yi3,Du Yu-hua3,Zhang Jun-fei3,Chen Yan3,Zhang Lei3,Nan Yi3ORCID

Affiliation:

1. Pathology of Department, General Hospital of Ningxia Medical University, Yinchuan, China

2. Pharmacy College of Ningxia Medical University, Yinchuan, China

3. Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China

Abstract

Gastric cancer (GC) is the most aggressive malignant tumor of the digestive tract. However, there is still a lack of effective treatment methods in clinical practice. Studies have shown that dehydroandrographolide (DA) has been shown to have anti-cancer activity in a variety of cancers, but it has not been reported in GC. Firstly, we obtained data on DA target genes, GC-related genes, and differentially expressed genes (DEGs) from the PharmMapper, GeneCards, and GEO databases, respectively. Then, the STRING database was used to construct the protein–protein interaction network of intersection genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of intersection genes were performed. Finally, 8 hub target genes were identified by analyzing their expression and prognostic survival, and molecular docking between the hub genes and DA was performed. In this study, 293 DA drug target genes, 11,366 GC-related genes, and 3184 DEGs were identified. Gene Ontology and KEGG analysis showed that the intersection genes of DA targets and GC-related genes were mainly related to cancer pathways involving apoptosis and cell adhesion. The intersection genes of DEGs, DA targets, and GC-related genes were also mainly related to cancer pathways involving chemical carcinogenesis, and drug metabolism. The molecular docking results showed that the 8 hub target genes had an apparent affinity for DA, which could be used as potential targets for DA treatment of GC. The results of this study show that the molecular mechanism by which DA inhibits GC metastasis involves multiple target genes. It may play an essential role in inhibiting the invasion and metastasis of GC by regulating the expression and polymorphism of hub target genes, such as MMP9, MMP12, CTSB, ESRRG, GSTA1, ADHIC, CA2, and AKR1C2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3