A cuproptosis-related gene signature and associated regulatory axis in stomach adenocarcinoma based on bioinformatics analysis

Author:

Ding Dongxiao12,Wang Dianqian1,Qin Yunsheng34ORCID

Affiliation:

1. Health Science Center, Ningbo University, Ningbo, Zhejiang, China

2. Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, Zhejiang, China

3. Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China

4. Department of Hepatobiliary Surgery, The People’s Hospital of Beilun District, Ningbo, Zhejiang, China.

Abstract

Stomach adenocarcinoma (STAD) is a highly aggressive and extremely heterogeneous gastric cancer characterized by high morbidity and mortality. Cuproptosis, a copper (Cu)-triggered modality of mitochondrial cell death, could regulate tumor proliferation and metastasis. Least absolute shrinkage and selection operator cox regression analysis was constructed to develop a prognostic cuproptosis-related signature. A lncRNA-miRNA-mRNA regulatory axis was performed to explore cuproptosis-related mechanism for STAD. The expression of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A was upregulated in STAD versus normal tissue. We also summarized single nucleotide variants and copy number variation landscape of cuproptosis-related gene in STAD. Further analysis demonstrated that STAD patients with high expression of CDKN2A, DLD, GLS, and MTF1 and low expression of DLAT, FDX1, PDHA1 and PDHB had a poor overall survival (OS) and post progression survival (PPS) rate. By performing least absolute shrinkage and selection operator cox regression analysis, we constructed a cuproptosis-related prognostic signature for STAD. Further analysis demonstrated a significant correlation between FDX1 expression and immune cell infiltration, tumor mutational burden (TMB) score, microsatellite instability (MSI) score and drug sensitivity. Univariate and multivariate analysis indicated FDX1 expression and clinical stage as independent factors affecting the prognosis of STAD patients. We also identified a lncRNA MALAT1/miR-328-3p/FDX1 regulatory axis for STAD. Multi-omics approaches were performed to develop a cuproptosis-related signature with 2 genes (FDX1 and MTF1) for STAD. We also identified a lncRNA MALAT1/miR-328-3p/FDX1 regulatory axis for STAD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3