Prognostic value and potential molecular mechanism of ITGB superfamily members in hepatocellular carcinoma

Author:

Xie Haixiang1,Qin Chongjiu1,Zhou Xin1,Liu Junqi1,Yang Kejian1,Nong Jusen1,Luo Jianzhu1,Peng Tao1ORCID

Affiliation:

1. Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China.

Abstract

We analyzed the prognostic value and potential molecular mechanisms of the members of integrin β (ITGB)superfamily in hepatocellular carcinoma (HCC) using data from The Cancer Genome Atlas (TCGA), cBioPortal, Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas (HPA) HPA, Search Tool for the Retrieval of Interacting Genes/Proteins, GeneMANIA, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), TIMER and Gene set enrichment analysis (GSEA) databases. ITGB4/5 mRNA was upregulated in HCC tissues in contrast to the normal liver tissues, whereas ITGB2/3/8 levels were lower in the former. ITGB4 was the most frequently mutated ITGB gene in HCC. Receiver operating characteristic curve (ROC) analysis showed that the expression levels of ITGB2/3/4/5/7/8 had significant diagnostic value in distinguishing HCC tissues from healthy liver tissues, ITGB8 had the highest diagnostic efficacy. The ITGB1/3/6/8 were also upregulated in the HCC tissues in contrast to healthy liver tissues. The expression of ITGB8 was verified by immunohistochemistry (IHC). Furthermore, ITGB6 and ITGB7 expression levels were strongly associated with the overall survival (OS) of HCC patients. The ITGB superfamily members exhibited homology and interactions in protein structure. In addition, ITGB6 together with ITGB7 were negatively related to the infiltration of multiple immune cell populations. GSEA results showed that ITGB6 was enriched in HCC migration and recurrence, whereas ITGB7 was significantly enriched in HIPPO, TOLL and JAK-STAT signaling pathways. In conclusion, ITGB6 and ITGB7 genes are possible to be prognostic biomarkers for HCC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3