NDUFB11 and NDUFS3 regulate arterial atherosclerosis and venous thrombosis: Potential markers of atherosclerosis and venous thrombosis

Author:

Ma Yan-Hong1,Yang Yin2,Li Jing-Hui2,Yao Bo-Chen2,Chen Qing-Liang2,Wang Lian-Qun2,Guo Zhi-Gang2ORCID,Guo Su-Zhi1

Affiliation:

1. Department of ICU, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China

2. Clinical School of Thoracic, Tianjin Medical University, Tianjin, PR China.

Abstract

Atherosclerosis is a chronic disease that thickens the blood vessel walls and narrows the lumen. Venous thrombosis is a blood clot that forms in the body’s deep veins or pulmonary arteries. However, the relationship between NDUFB11 and NDUFS3 and atherosclerosis and venous thrombosis is unclear. We employed data files that combined atherosclerosis and chronic stress groups. Subsequently, we conducted differential gene expression analysis (DEGs) and performed weighted gene co-expression network analysis (WGCNA). We constructed and analyzed a protein-protein interaction (PPI) network. Further analyses included functional enrichment analysis, gene set enrichment analysis (GSEA), gene expression heatmaps, immune infiltration analysis, and mRNA analysis. By comparing our findings with the Comparative Toxicogenomics Database (CTD), we identified the most relevant diseases associated with the core genes. Additionally, we utilized TargetScan to screen for miRNAs regulating the central DEGs. To validate our results, we conducted Western Blot experiments at the cellular level. A total of 1747 DEGs were co-identified. According to the Gene Ontology (GO) analysis of differentially expressed genes, they were primarily enriched in mitochondrial gene expression, mitochondrial envelope, organelle membrane, and mitochondrial inner membrane categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the target cells were mainly enriched in metabolic pathways, ribosomes, and histidine metabolism. The intersection of enriched terms from both GO and KEGG analyses showed significant enrichment in mitochondrial gene expression, mitochondrial envelope, organelle inner membrane, ribosomal structural constituents, histidine metabolism, and oxidative phosphorylation. Eight core genes were identified, including NDUFS5, UQCRQ, COX6C, COX7B, ATP5ME, NDUFS3, NDUFA3, and NDUFB11. The gene expression heatmap demonstrated that core genes (NDUFB11 and NDUFS3) were downregulated in atherosclerosis with venous thrombosis samples and upregulated in normal samples. CTD analysis revealed that the core genes NDUFB11 and NDUFS3 were associated with pain, arterial diseases, atherosclerosis, arteritis, venous thrombosis formation, and venous thromboembolism. We added Western Blot basic cell experiment for verification. NDUFB11 and NDUFS3 are downregulated in atherosclerosis and venous thrombosis, associated with poorer prognosis, and may serve as potential biomarkers for both diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3