Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification

Author:

Zhang Jie1ORCID,Qi Cong2,Li He3,Ding Chenhuan3,Wang Libo1,Wu Hongjin1,Dai Weiwei1,Wang Chenglong1

Affiliation:

1. Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Abstract

The mortality rate of ovarian cancer is the highest among gynecological cancers, posing a serious threat to women health and life. Scutellaria barbata D. Don (SBD) can effectively treat ovarian cancer. However, its mechanism of action is unclear. The aim of this study was to elucidate the mechanism of SBD in the treatment of ovarian cancer using network pharmacology, and to verify the experimental results using human ovarian cancer SKOV3 cells. The Herb and Disease Gene databases were searched to identify common targets of SBD and ovarian cancer. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind SBD. Finally, the molecular docking and main possible pathways were verified by experimental studies. Cell proliferation, the mRNA expression level of key genes and signaling pathway were all investigated and evaluated in vitro. A total of 29 bioactive ingredients and 137 common targets in SBD were found to inhibit ovarian cancer development. The active ingredients identified include quercetin, luteolin, and wogonin. Analysis of the PPI network showed that AKT1, VEGFA, JUN, TNF, and Caspase-3 shared centrality among all target genes. The results of the KEGG pathway analysis indicated that the cancer pathway, PI3K-Akt signaling pathway, and MAPK signaling pathways mediated the effects of SBD against ovarian cancer progression. Cell experiments showed that quercetin, luteolin, and wogonin inhibited the proliferation and clone formation of SKOV3 cells and regulated mRNA expression of 5 key genes by inhibiting PI3K/Akt signaling pathway. Our results demonstrate that SBD exerted anti-ovarian cancer effects through its key components quercetin, luteolin and wogonin. Mechanistically, its anti-cancer effects were mediated by inhibition of the PI3K/Akt signaling pathways. Therefore, SBD might be a candidate drug for ovarian cancer treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3