Bioengineered vascular grafts with a pathogenic TGFBR1 variant model aneurysm formation in vivo and reveal underlying collagen defects

Author:

Yang Ying1ORCID,Feng Hao12,Tang Ying12,Wang Zhenguo3ORCID,Qiu Ping1ORCID,Huang Xihua1,Chang Lin3ORCID,Zhang Jifeng3ORCID,Chen Yuqing Eugene13ORCID,Mizrak Dogukan1ORCID,Yang Bo1ORCID

Affiliation:

1. Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA.

2. Second Xiangya Hospital, Central South University, Changsha, 410011, China.

3. Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)–associated pathogenic variant ( TGFBR1 A230T ). We also generated hiPSC-derived BVGs using cells from a patient with LDS ( Patient A230T/+ ) and using genetically corrected cells ( Patient +/+ ). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1 A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in Patient A230T/+ BVGs compared with Patient +/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in Patient A230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in Patient A230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3