Guanosine diphosphate–mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer

Author:

Ding Jia-Han12ORCID,Xiao Yi1ORCID,Yang Fan1ORCID,Song Xiao-Qing1,Xu Ying1,Ding Xiao-Hong1,Ding Rui1,Shao Zhi-Ming1ORCID,Di Gen-Hong1ORCID,Jiang Yi-Zhou1ORCID

Affiliation:

1. Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.

2. Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, P. R. China.

Abstract

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis. TNBCs with high homologous recombination deficiency (HRD) scores benefit from DNA-damaging agents, including platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, whereas those with low HRD scores still lack therapeutic options. Therefore, we sought to exploit metabolic alterations to induce HRD and sensitize DNA-damaging agents in TNBCs with low HRD scores. We systematically analyzed TNBC metabolomics and identified a metabolite, guanosine diphosphate (GDP)–mannose (GDP-M), that impeded homologous recombination repair (HRR). Mechanistically, the low expression of the upstream enzyme GDP-mannose-pyrophosphorylase-A (GMPPA) led to the endogenous up-regulation of GDP-M in TNBC. The accumulation of GDP-M in tumor cells further reduced the interaction between breast cancer susceptibility gene 2 (BRCA2) and ubiquitin-specific peptidase 21 (USP21), which promoted the ubiquitin-mediated degradation of BRCA2 to inhibit HRR. Therapeutically, we illustrated that the supplementation of GDP-M sensitized DNA-damaging agents to impair tumor growth in both in vitro (cancer cell line and patient-derived organoid) and in vivo (xenograft in immunodeficient mouse) models. Moreover, the combination of GDP-M with DNA-damaging agents activated STING-dependent antitumor immunity in immunocompetent syngeneic mouse models. Therefore, GDP-M supplementation combined with PARP inhibition augmented the efficacy of anti–PD-1 antibodies. Together, these findings suggest that GDP-M is a crucial HRD-related metabolite and propose a promising therapeutic strategy for TNBCs with low HRD scores using the combination of GDP-M, PARP inhibitors, and anti–PD-1 immunotherapy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3