Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics

Author:

Aogo Rosemary A.1ORCID,Zambrana Jose Victor23ORCID,Sanchez Nery2ORCID,Ojeda Sergio2ORCID,Kuan Guillermina24ORCID,Balmaseda Angel25,Gordon Aubree3ORCID,Harris Eva6ORCID,Katzelnick Leah C.1ORCID

Affiliation:

1. Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA.

2. Sustainable Sciences Institute, Managua 14007, Nicaragua.

3. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.

4. Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua 12014, Nicaragua.

5. Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua 16064, Nicaragua.

6. Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.

Abstract

Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults ( n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3