A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons

Author:

Perez-Sanchez Jimena1ORCID,Middleton Steven J.1ORCID,Pattison Luke A.2,Hilton Helen2,Ali Awadelkareem Mosab1ORCID,Zuberi Sana R.1,Renke Maria B.1ORCID,Hu Huimin1ORCID,Yang Xun1,Clark Alex J.3ORCID,St. John Smith Ewan2,Bennett David L.1ORCID

Affiliation:

1. Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.

2. Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.

3. Blizard Institute, Barts and the London School of Medicine and Dentistry, London E1 2AT, UK.

Abstract

Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM 4 -GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM 4 -GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM 4 -GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM 4 -GlyR activation decreased the excitability of human-induced pluripotent stem cell–derived sensory neurons and spontaneous activity due to a gain-of-function Na V 1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3