The role of user preference in the customized control of robotic exoskeletons

Author:

Ingraham K. A.12ORCID,Remy C. D.3ORCID,Rouse E. J.12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.

2. Robotics Institute, University of Michigan, Ann Arbor, MI, USA.

3. Institute for Nonlinear Mechanics, University of Stuttgart, Stuttgart, Germany.

Abstract

User preference is a promising objective for the control of robotic exoskeletons because it may capture the multifactorial nature of exoskeleton use. However, to use it, we must first understand its characteristics in the context of exoskeleton control. Here, we systematically measured the control preferences of individuals wearing bilateral ankle exoskeletons during walking. We investigated users’ repeatability identifying their preferences and how preference changes with walking speed, device exposure, and between individuals with different technical backgrounds. Twelve naive and 12 knowledgeable nondisabled participants identified their preferred assistance in repeated trials by simultaneously self-tuning the magnitude and timing of peak torque. They were blinded to the control parameters and relied solely on their perception of the assistance to guide their tuning. We found that participants’ preferences ranged from 7.9 to 19.4 newton-meters and 54.1 to 59.2 percent of the gait cycle. Across trials, participants repeatably identified their preferences with a mean standard deviation of 1.7 newton-meters and 1.5 percent of the gait cycle. Within a trial, participants converged on their preference in 105 seconds. As the experiment progressed, naive users preferred higher torque magnitude. At faster walking speeds, these individuals were more precise at identifying the magnitude of their preferred assistance. Knowledgeable users preferred higher torque than naive users. These results highlight that although preference is a dynamic quantity, individuals can reliably identify their preferences. This work motivates strategies for the control of lower limb exoskeletons in which individuals customize assistance according to their unique preferences and provides meaningful insight into how users interact with exoskeletons.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3