Reversible phase transformations between Pb nanocrystals and a viscous liquid-like phase

Author:

Zheng Wenjing1ORCID,Kang Jun23ORCID,Niu Kaiyang4,Ophus Colin5ORCID,Chan Emory M.6ORCID,Ercius Peter5ORCID,Wang Lin-Wang7ORCID,Wu Junqiao8ORCID,Zheng Haimei48ORCID

Affiliation:

1. School of Energy and Power Engineering, North University of China, Taiyuan 030051, China.

2. Beijing Computational Science Research Center, Beijing 100193, China.

3. Department of Physics, Beijing Normal University, Beijing 100875, China.

4. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

5. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

7. Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing 100083, China.

8. Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

Abstract

Phase transformations have been a prominent topic of study for both fundamental and applied science. Solid-liquid reaction–induced phase transformations can be hard to characterize, and the transformation mechanisms are often not fully understood. Here, we report reversible phase transformations between a metal (Pb) nanocrystal and a viscous liquid-like phase unveiled by in situ liquid cell transmission electron microscopy. The reversible phase transformations are obtained by modulating the electron current density (between 1000 and 3000 electrons Å −2 s −1 ). The metal-organic viscous liquid-like phase exhibits short-range ordering with a preferred Pb-Pb distance of 0.5 nm. Assisted by density functional theory and molecular dynamics calculations, we show that the viscous liquid-like phase results from the reactions of Pb with the CH 3 O fragments from the triethylene glycol solution under electron beam irradiation. Such reversible phase transformations may find broad implementations.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3