Metabolically driven flows enable exponential growth in macroscopic multicellular yeast

Author:

Narayanasamy Nishant1ORCID,Bingham Emma23ORCID,Fadero Tanner4,Bozdag G. Ozan5ORCID,Ratcliff William C.5ORCID,Yunker Peter2ORCID,Thutupalli Shashi16ORCID

Affiliation:

1. Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India.

2. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.

3. Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.

4. Woods Hole Marine Biological Laboratory, Woods Hole, MA, USA.

5. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

6. International Centre for Theoretical Sciences (TIFR), Bangalore, India.

Abstract

The ecological and evolutionary success of multicellular lineages stems substantially from their increased size relative to unicellular ancestors. However, large size poses biophysical challenges, especially regarding nutrient transport: These constraints are typically overcome through multicellular innovations. Here, we show that an emergent biophysical mechanism—spontaneous fluid flows arising from metabolically generated density gradients—can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Beyond a threshold size, the metabolic activity of experimentally evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by ciliary actuation in extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This demonstrates how simple physical mechanisms can act as a “biophysical scaffold” to support the evolution of multicellularity by opening up phenotypic possibilities before genetically encoded innovations.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3