All-weather thermochromic windows for synchronous solar and thermal radiation regulation

Author:

Lin Chongjia1ORCID,Hur Jun1ORCID,Chao Christopher Y. H.2ORCID,Liu Gongze1ORCID,Yao Shuhuai1ORCID,Li Weihong13ORCID,Huang Baoling14ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

2. Department of Building Environment and Energy Engineering and Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

3. Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.

4. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.

Abstract

Adaptive control of solar and thermal radiation through windows is of pivotal importance for building energy saving. However, such synchronous passive regulations are challenging to be integrated into one thermochromic window. Here, we develop a solar and thermal regulatory (STR) window by integrating poly( N -isopropylacrylamide) (pNIPAm) and silver nanowires (AgNWs) into pNIPAm/AgNW composites. A hitherto unexplored mechanism, originating from the temperature-triggered water capture and release due to pNIPAm phase transition, is exploited to achieve simultaneous regulations of solar transmission and thermal emission. The STR window shows excellent solar modulation (58.4%) and thermal modulation (57.1%) and demonstrates effective regulation of indoor temperatures during both daytime and nighttime. Compared to other thermochromic technologies, the STR window reduces heat loss in cold environment while promotes heat dissipation in hot conditions, achieving efficient energy saving in all weathers. This dual solar and thermal regulation mechanism may provide unidentified insights into the advancement of smart window technology.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3