Oxidation of iron by giant impact and its implication on the formation of reduced atmosphere in the early Earth

Author:

Choi Jinhyuk1ORCID,Husband Rachel J.2ORCID,Hwang Huijeong23ORCID,Kim Taehyun1ORCID,Bang Yoonah1ORCID,Yun Seohee1ORCID,Lee Jeongmin1ORCID,Sim Heehyeon1,Kim Sangsoo4ORCID,Nam Daewoong45ORCID,Chae Boknam4ORCID,Liermann Hanns-Peter2ORCID,Lee Yongjae1ORCID

Affiliation:

1. Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea.

2. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany.

3. School of Earth Sciences and Environmental Engineering, GIST, Gwangju 61005, Republic of Korea.

4. Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea.

5. Photon Science Center, POSTECH, Pohang 37673, Republic of Korea.

Abstract

Giant impact–driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact–driven reactions between iron and volatiles (H 2 O and CO 2 ) using x-ray free electron laser (XFEL) as fast heat pump and structural probe. Under XFEL pump, iron is oxidized to wüstite (FeO), while volatiles are reduced to H 2 and CO. Furthermore, iron oxidation proceeds into formation of hydrides (γ-FeH x ) and siderite (FeCO 3 ), implying redox boundary near 300-km depth. Through quantitative analysis on reaction products, we estimate the volatile and FeO budgets in bulk silicate Earth, supporting the Theia hypothesis. Our findings shed light on the fast and short-lived process that led to reduced atmosphere, required for the emergence of prebiotic organic molecules in the early Earth.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3