Van der Waals phase transition investigation toward high-voltage layered cathodes

Author:

Gao Ang12ORCID,Shen Shijie1ORCID,Shang Tongtong2ORCID,Shi Yuansheng3ORCID,Zhang Huanhuan1,Lin Weiguang4ORCID,Wang Shiyu4,Lin Ting4ORCID,Ji Pengxiang4,Wang Yichi2ORCID,Chen Yujie2ORCID,Yu Botao2,Lu Xia3ORCID,Zhong Wenwu1ORCID,Zhang Qinghua4ORCID,Gu Lin2ORCID

Affiliation:

1. School of Materials Science and Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China.

2. Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

3. School of Materials, Sun Yat-sen University, Shenzhen 518107, China.

4. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Abstract

High-voltage phase transition constitutes the major barrier to accessing high energy density in layered cathodes. However, questions remain regarding the origin of phase transition, because the interlayer weak bonding features cannot get an accurate description by experiments. Here, we determined van der Waals (vdW) interaction (vdWi) in Li x CoO 2 via visualizing its electron density, elucidating the origin of O3─O1 phase transition. The charge around oxygen is distorted by the increasing Co─O covalency. The charge distortion causes the difference of vdW gap between O3 and O1 phases, verified by a gap corrected vdW equation. In a high charging state, excessive covalency breaks the vdW gap balance, driving the O3 phase toward a stable O1 one. This interpretation of vdWi-dominated phase transition can be applied to other layered materials, as shown by a map regarding degree of covalence. Last, we introduce the cationic potential to provide a solution for designing high-voltage layered cathodes.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3