Intercellular communication within the virus microenvironment affects the susceptibility of cells to secondary viral infections

Author:

Song Bokai1ORCID,Sheng Xinlei1ORCID,Justice Joshua L.1ORCID,Lum Krystal K.1,Metzger Peter J.1ORCID,Cook Katelyn C.1ORCID,Kostas James C.1ORCID,Cristea Ileana M.1ORCID

Affiliation:

1. Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.

Abstract

Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells. Cell sorting, microscopy, proteomics, and cell cycle assays allow resolving cellular features and functional consequences of proximity to infection. We show that human cytomegalovirus (HCMV) infection primes neighboring cells for both subsequent HCMV infections and secondary infections with herpes simplex virus 1 and influenza A. Neighboring cells exhibit mitotic arrest, dampened innate immunity, and altered extracellular matrix. Conversely, distal cells are poised to slow viral spread due to enhanced antiviral responses. These findings demonstrate how infection reshapes the microenvironment through intercellular signaling to facilitate spread and how spatial proximity to an infection guides cell fate.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3