Polydopamine-based nanomedicines for efficient antiviral and secondary injury protection therapy

Author:

Yin Na123ORCID,Zhang Zhongmou45ORCID,Ge Yongzhuang145,Zhao Yuzhen123,Gu Zichen456,Yang Yue123,Mao Lu45,Wei Zhanyong7,Liu Junjie1238ORCID,Shi Jinjin1238ORCID,Wang Zhenya457ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.

2. Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.

3. Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China.

4. Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.

5. Key Laboratory of “Runliang” Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China.

6. Zhengzhou University of Industrial Technology, Zhengzhou 450001, China.

7. International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China.

8. State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China.

Abstract

Viral infections continue to threaten human health. It remains a major challenge to efficiently inhibit viral infection while avoiding secondary injury. Here, we designed a multifunctional nanoplatform (termed as ODCM), prepared by oseltamivir phosphate (OP)–loaded polydopamine (PDA) nanoparticles camouflaged by the macrophage cell membrane (CM). OP can be efficiently loaded onto the PDA nanoparticles through the π-π stacking and hydrogen bonding interactions with a high drug-loading rate of 37.6%. In particular, the biomimetic nanoparticles can accumulate actively in the damaged lung model of viral infection. At the infection site, PDA nanoparticles can consume excess reactive oxygen species and be simultaneously oxidized and degraded to achieve controlled release of OP. This system exhibits enhanced delivery efficiency, inflammatory storm suppression, and viral replication inhibition. Therefore, the system exerts outstanding therapeutic effects while improving pulmonary edema and protecting lung injury in a mouse model of influenza A virus infection.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3