Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF

Author:

Corbeski Ivan1ORCID,Guo Xiaohu2,Eckhardt Bruna V.3ORCID,Fasci Domenico4,Wiegant Wouter5,Graewert Melissa A.6,Vreeken Kees5ORCID,Wienk Hans1ORCID,Svergun Dmitri I.6ORCID,Heck Albert J. R.4ORCID,van Attikum Haico5ORCID,Boelens Rolf1ORCID,Sixma Titia K.2ORCID,Mattiroli Francesca3ORCID,van Ingen Hugo1ORCID

Affiliation:

1. NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.

2. Division of Biochemistry and Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands.

3. Hubrecht Institute—KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands.

4. Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.

5. Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.

6. European Molecular Biology Laboratory (EMBL), Hamburg Unit, DESY, Notkestrasse 85, D-22607 Hamburg, Germany.

Abstract

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLF AD ) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLF AD -histone octamer complex shows that APLF AD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLF AD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3