Machine learning for industrial processes: Forecasting amine emissions from a carbon capture plant

Author:

Jablonka Kevin Maik1ORCID,Charalambous Charithea2ORCID,Sanchez Fernandez Eva3ORCID,Wiechers Georg4,Monteiro Juliana5,Moser Peter4ORCID,Smit Berend1ORCID,Garcia Susana2ORCID

Affiliation:

1. Laboratory of Molecular Simulation (LSMO), École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.

2. The Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, UK.

3. Solverlo Ltd, EH42 1TL Dunbar, UK.

4. RWE Power AG, Ernestinenstraße 60, 45141 Essen, Germany.

5. TNO, Leeghwaterstraat 44, 2628 CA Delft, Netherlands.

Abstract

One of the main environmental impacts of amine-based carbon capture processes is the emission of the solvent into the atmosphere. To understand how these emissions are affected by the intermittent operation of a power plant, we performed stress tests on a plant operating with a mixture of two amines, 2-amino-2-methyl-1-propanol and piperazine (CESAR1). To forecast the emissions and model the impact of interventions, we developed a machine learning model. Our model showed that some interventions have opposite effects on the emissions of the components of the solvent. Thus, mitigation strategies required for capture plants operating on a single component solvent (e.g., monoethanolamine) need to be reconsidered if operated using a mixture of amines. Amine emissions from a solvent-based carbon capture plant are an example of a process that is too complex to be described by conventional process models. We, therefore, expect that our approach can be more generally applied.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3