Ultrathin covalent organic framework nanosheets for enhanced photocatalytic water oxidation

Author:

Zhou Enbo12ORCID,Zhang Xiang13ORCID,Zhu Lei4ORCID,Chai Erchong5ORCID,Chen Jinsong1ORCID,Li Jie1ORCID,Yuan Daqiang12ORCID,Kang Longtian12ORCID,Sun Qingfu12ORCID,Wang Yaobing123ORCID

Affiliation:

1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China.

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

3. Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China.

4. School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, 243002 Anhui, P. R. China.

5. Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, P. R. China.

Abstract

Photocatalytic water oxidation is a key half-reaction for various solar-to-fuel conversion systems but requires simultaneous water affinity and hole accumulation at the photocatalytic site. Here, we present the rational design and synthesis of an ionic-type covalent organic framework (COF) named tetraphenylporphyrin cobalt and cobalt bipyridine complex (CoTPP-CoBpy 3 ) COF, combining cobalt porphyrin and cobalt bipyridine building blocks as a photocatalyst for water oxidation. The good dispersibility of porous large-size (>2 micrometers) COF nanosheets (≈1.45 nanometers) facilitates local water collection; the ultrafast triplet-state charge transfer (1.8 picoseconds) and prolonged charge separation (1.2 nanoseconds) further contribute to the efficient accumulation of holes in the CoTPP moiety, leading to a photocatalytic dioxygen production rate of 7323 micromoles per gram per hour. Moreover, we have identified an end-on superoxide radical (O 2 · ) intermediate at the active site of the CoTPP moiety and proposed an electron-intermediate cascade mechanism that elucidates the synergistic coupling of electron relay (S 1 -T 1 -T 1 ′) and intermediate evolution during the photocatalytic process.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3