Identification of 113 new histone marks by CHiMA, a tailored database search strategy

Author:

Gao Jinjun1ORCID,Sheng Xinlei1ORCID,Du Jianfeng1,Zhang Di23ORCID,Han Chang1,Chen Yue4ORCID,Wang Chu35ORCID,Zhao Yingming1ORCID

Affiliation:

1. Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.

2. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.

3. Peking–Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

4. Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA.

5. Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Abstract

Shotgun proteomics has been widely used to identify histone marks. Conventional database search methods rely on the “target-decoy” strategy to calculate the false discovery rate (FDR) and distinguish true peptide-spectrum matches (PSMs) from false ones. This strategy has a caveat of inaccurate FDR caused by the small data size of histone marks. To address this challenge, we developed a tailored database search strategy, named “Comprehensive Histone Mark Analysis (CHiMA).” Instead of target-decoy–based FDR, this method uses “50% matched fragment ions” as the key criterion to identify high-confidence PSMs. CHiMA identified twice as many histone modification sites as the conventional method in benchmark datasets. Reanalysis of our previous proteomics data using CHiMA led to the identification of 113 new histone marks for four types of lysine acylations, almost doubling the number of previously reported marks. This tool not only offers a valuable approach for identifying histone modifications but also greatly expands the repertoire of histone marks.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3