Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks

Author:

Hauffe Torsten1ORCID,Cantalapiedra Juan L.234ORCID,Silvestro Daniele15ORCID

Affiliation:

1. Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland.

2. Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.

3. GloCEE Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28801 Alcalá de Henares, Spain.

4. Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.

5. Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, 40530 Gothenburg, Sweden.

Abstract

Species life-history traits, paleoenvironment, and biotic interactions likely influence speciation and extinction rates, affecting species richness over time. Birth-death models inferring the impact of these factors typically assume monotonic relationships between single predictors and rates, limiting our ability to assess more complex effects and their relative importance and interaction. We introduce a Bayesian birth-death model using unsupervised neural networks to explore multifactorial and nonlinear effects on speciation and extinction rates using fossil data. It infers lineage- and time-specific rates and disentangles predictor effects and importance through explainable artificial intelligence techniques. Analysis of the proboscidean fossil record revealed speciation rates shaped by dietary flexibility and biogeographic events. The emergence of modern humans escalated extinction rates, causing recent diversity decline, while regional climate had a lesser impact. Our model paves the way for an improved understanding of the intricate dynamics shaping clade diversification.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3