Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion

Author:

Frey Sean T.1ORCID,Haque A. B. M. Tahidul2ORCID,Tutika Ravi23ORCID,Krotz Elizabeth V.3ORCID,Lee Chanhong2,Haverkamp Cole B.1,Markvicka Eric J.45ORCID,Bartlett Michael D.23ORCID

Affiliation:

1. Materials Science and Engineering, Iowa State University, Ames, IA 50010, USA.

2. Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA 24061, USA.

3. Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.

4. Department of Mechanical and Materials Engineering, Smart Materials and Robotics Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

5. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

Abstract

The octopus couples controllable adhesives with intricately embedded sensing, processing, and control to manipulate underwater objects. Current synthetic adhesive–based manipulators are typically manually operated without sensing or control and can be slow to activate and release adhesion, which limits system-level manipulation. Here, we couple switchable, octopus-inspired adhesives with embedded sensing, processing, and control for robust underwater manipulation. Adhesion strength is switched over 450× from the ON to OFF state in <50 ms over many cycles with an actively controlled membrane. Systematic design of adhesive geometry enables adherence to nonideal surfaces with low preload and independent control of adhesive strength and adhesive toughness for strong and reliable attachment and easy release. Our bio-inspired nervous system detects objects and autonomously triggers the switchable adhesives. This is implemented into a wearable glove where an array of adhesives and sensors creates a biomimetic adhesive skin to manipulate diverse underwater objects.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3