Suppression of antiferromagnetic order by strain-enhanced frustration in honeycomb cobaltate

Author:

Kim Gye-Hyeon1ORCID,Park Miju1ORCID,Samanta Subhasis23ORCID,Choi Uksam1ORCID,Kang Baekjune1ORCID,Seo Uihyeon1ORCID,Ji GwangCheol4ORCID,Noh Seunghyeon5,Cho Deok-Yong6ORCID,Yoo Jung-Woo5ORCID,Ok Jong Mok4ORCID,Kim Heung-Sik2ORCID,Sohn Changhee1ORCID

Affiliation:

1. Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

2. Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.

3. Center for Extreme Quantum Matter and Functionality, Sungkyunkwan University, Suwon 16419 Republic of Korea.

4. Department of Physics, Pusan National University, Busan 46241, Republic of Korea.

5. Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

6. Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea.

Abstract

Layered honeycomb cobaltates are predicted as promising for realizing the Kitaev quantum spin liquid, a many-body quantum entangled ground state characterized by fractional excitations. However, they exhibit antiferromagnetic ordering at low temperatures, hindering the expected quantum state. We demonstrate that controlling the trigonal distortion of CoO 6 octahedra is crucial to suppress antiferromagnetic order through enhancing frustration in layered honeycomb cobaltates. Using heterostructure engineering on Cu 3 Co 2 SbO 6 thin films, we adjust the trigonal distortion of CoO 6 octahedra and the resulting trigonal crystal field. The original Néel temperature of 16 kelvin in bulk Cu 3 Co 2 SbO 6 decreases (increases) to 7.8 kelvin (22.7 kelvin) in strained Cu 3 Co 2 SbO 6 films by decreasing (increasing) the magnitude of the trigonal crystal fields. The first-principles calculation suggests the enhancement of geometrical frustration as the origin of the suppression of antiferromagnetism. This finding supports the potential of layered honeycomb cobaltate heterostructures and strain engineering in realizing extremely elusive quantum phases of matter.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3