Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

Author:

Xu Fei1ORCID,Qu Changzhen1,Lu Qiongqiong2ORCID,Meng Jiashen3,Zhang Xiuhai1,Xu Xiaosa1,Qiu Yuqian1,Ding Baichuan1,Yang Jiaying1ORCID,Cao Fengren4,Yang Penghui1,Jiang Guangshen1,Kaskel Stefan5ORCID,Ma Jingyuan6ORCID,Li Liang4ORCID,Zhang Xingcai37ORCID,Wang Hongqiang1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China.

2. Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V. Helmholtzstr 20, Dresden 01069, Germany.

3. School of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

4. School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.

5. Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, Dresden 01062, Germany.

6. Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China.

7. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Abstract

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm −2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm −2 ) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3