Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures

Author:

Johnson Amalya C.1ORCID,Georgaras Johnathan D.1ORCID,Shen Xiaozhe2ORCID,Yao Helen12ORCID,Saunders Ashley P.3ORCID,Zeng Helen J.3ORCID,Kim Hyungjin3,Sood Aditya4ORCID,Heinz Tony F.245ORCID,Lindenberg Aaron M.146ORCID,Luo Duan12ORCID,da Jornada Felipe H.1ORCID,Liu Fang3ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

2. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

3. Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

4. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

5. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

6. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

Abstract

Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS 2 /WS 2 at 4° twist angle and WSe 2 /MoSe 2 heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3