Artificial visual systems enabled by quasi–two-dimensional electron gases in oxide superlattice nanowires

Author:

Meng You123ORCID,Li Fangzhou1ORCID,Lan Changyong4ORCID,Bu Xiuming1,Kang Xiaolin123ORCID,Wei Renjie1235ORCID,Yip SenPo1235,Li Dapan13,Wang Fei12,Takahashi Tsunaki6ORCID,Hosomi Takuro6ORCID,Nagashima Kazuki6ORCID,Yanagida Takeshi67ORCID,Ho Johnny C.12357ORCID

Affiliation:

1. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR.

2. State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong SAR.

3. Centre for Functional Photonics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR.

4. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

5. Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, P. R. China.

6. Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8654, Japan.

7. Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan.

Abstract

Quasi–two-dimensional electron gases in superlattice nanowires enable the ultralow-power artificial visual systems.

Funder

National Natural Science Foundation of China

Science Technology and Innovation Committee of Shenzhen Municipality

General Research Fund of the Research Grants Council of Hong Kong SAR, China

Shenzhen Research Institute, City University of Hong Kong

Theme-based Research of the Research Grants Council of Hong Kong SAR, China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference80 articles.

1. E. R. Kandel J. H. Schwartz T. M. Jessell S. A. Siegelbaum A. J. Hudspeth Principles of Neural Science (McGraw-Hill New York 2000).

2. Synaptic computation

3. A skin-inspired organic digital mechanoreceptor

4. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain

5. A bioinspired flexible organic artificial afferent nerve

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3