Infrared plasmons propagate through a hyperbolic nodal metal

Author:

Shao Yinming1ORCID,Sternbach Aaron J.1ORCID,Kim Brian S. Y.2,Rikhter Andrey A.3ORCID,Xu Xinyi2ORCID,De Giovannini Umberto45ORCID,Jing Ran1ORCID,Chae Sang Hoon2ORCID,Sun Zhiyuan1ORCID,Lee Seng Huat67ORCID,Zhu Yanglin67ORCID,Mao Zhiqiang67ORCID,Hone James C.2ORCID,Queiroz Raquel1ORCID,Millis Andrew J.18ORCID,Schuck P. James2ORCID,Rubio Angel48ORCID,Fogler Michael M.3ORCID,Basov Dmitri N.1ORCID

Affiliation:

1. Department of Physics, Columbia University, New York, NY 10027, USA.

2. Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

3. Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.

4. Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg 22761, Germany.

5. Università degli Studi di Palermo, Dipartimento di Fisica e Chimica Emilio Segrè, via Archirafi 36, I-90123 Palermo, Italy.

6. Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.

7. 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.

8. Center for Computational Quantum Physics (CCQ), Flatiron Institute, New York, NY 10010, USA.

Abstract

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3