Affiliation:
1. Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland.
2. Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland.
Abstract
Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of eight distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and activation-associated phenotypes across immune cell classes. We further associate T cell morphology to transcriptional state based on their joint donor variability and validate an inflammation-associated polarized T cell morphology and an age-associated loss of mitochondria in CD4
+
T cells. Together, we show that immune cell phenotypes reflect both molecular and personal health information, opening new perspectives into the deep immune phenotyping of individual people in health and disease.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献