Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy

Author:

Peng Xiqi12ORCID,Tang Songsong23ORCID,Tang Daitian12,Zhou Dewang2,Li Yangyang2ORCID,Chen Qiwei12,Wan Fangchen2,Lukas Heather3ORCID,Han Hong3ORCID,Zhang Xueji4ORCID,Gao Wei3ORCID,Wu Song125ORCID

Affiliation:

1. Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou 515000, P. R. China.

2. Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China.

3. Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

4. School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China.

5. Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, P. R. China.

Abstract

Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3