Great Times for Small Molecules: c-di-AMP, a Second Messenger Candidate in Bacteria and Archaea

Author:

Römling Ute1

Affiliation:

1. Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, FE280, SE-171 77 Stockholm, Sweden.

Abstract

Successful cell division in pro- and eukaryotes is ensured by checkpoints that regulate cell cycle progression. Structural and biochemical analyses of the DNA integrity scanning protein (DisA) have recently shown that its domain of unknown function, DUF147 [renamed DAC (for diadenylate cyclase)], has diadenylate cyclase activity. This diadenylate cyclase activity is abolished when DisA binds to branched DNA substrates, which arise during DNA double-strand breaks that can spontaneously occur during DNA replication. This finding identifies cyclic di(3′→5′)-adenylic acid (c-di-AMP) as a second messenger candidate that signals DNA integrity in Bacillus subtilis during sporulation, a specialized cell division process that leads to formation of a dormant cell called a spore. The DAC domain is widespread in Bacteria and Archaea; moreover, it is found in proteins containing diverse domains, suggesting that c-di-AMP acts as a second messenger molecule in response to various signals besides branched DNA. To elucidate the biological importance and molecular mechanisms of action for c-di-AMP and the recently recognized second messenger c-di-GMP will require a multidisciplinary approach.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3