Morphological control of merlin-Rac antagonism in proliferation-promoting signaling

Author:

Weiss Byron G.12ORCID,Keth Justine M.12ORCID,Bhatt Kushal12,Doyal Meghan12ORCID,Hahn Klaus M.3ORCID,Noh Jungsik12ORCID,Isogai Tadamoto12ORCID,Danuser Gaudenz12ORCID

Affiliation:

1. Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

2. Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

3. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Abstract

The extension of lamellipodia, which are thin, fanlike projections at the cell periphery, requires the assembly of branched actin networks under the control of the small GTPase Rac1. In melanoma, a hyperactive P29S Rac1 mutant is associated with resistance to inhibitors that target the kinases BRAF and MAPK and with more aggressive disease because it sequesters and inactivates the tumor suppressor merlin (encoded by NF2 ) inside abnormally large lamellipodia. Here, we investigated how these merlin-inactivating lamellipodia are maintained using quantitative, live cell imaging of cell morphology and signaling dynamics. We showed that Rac1 and merlin activity were regulated in spatially confined regions or microdomains within the lamellipodium. The role of merlin as a proliferation-limiting tumor suppressor required its ability to inhibit lamellipodial extension and to locally inhibit Rac1 signaling. Conversely, local inactivation of merlin in lamellipodia released these restraints on morphology and signaling, leading to enhanced proliferation. Merlin and Rac1 are thus in a morphologically and dynamically regulated double-negative feedback loop, a signaling motif that can amplify and stabilize modest stimuli of lamellipodia extensions that enable melanoma to sustain mitogenic signaling under growth challenge. This represents an example of how acute oncogenicity is promoted by collaborations between cell morphological programs and biochemical signaling.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3