The critical role of water at the gold-titania interface in catalytic CO oxidation

Author:

Saavedra Johnny1,Doan Hieu A.2,Pursell Christopher J.1,Grabow Lars C.2,Chandler Bert D.1

Affiliation:

1. Department of Chemistry, Trinity University, San Antonio, TX 78212-7200, USA.

2. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.

Abstract

Easier oxidation over gold with added water Gold adsorbed on metal oxides is an excellent catalyst for the room-temperature oxidation of CO to CO 2 . However, there has been continuing disagreement between different studies on the key aspects of this catalyst. Saveeda et al. now show through kinetics and infrared spectroscopy that the presence of water can lower the reaction activation barrier by enabling OOH groups to form from adsorbed oxygen (see the Perspective by Mullen and Mullins). The OOH then reacts readily with CO. It thus seems that the main role of oxide support and its interface with the metal is in activating water, but that the steps of the reaction that involve CO occur on gold. Science , this issue p. 1599 ; see also p. 1564

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3