Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin

Author:

Wang Weichen1ORCID,Jiang Yuanwen2ORCID,Zhong Donglai2ORCID,Zhang Zhitao2ORCID,Choudhury Snehashis2,Lai Jian-Cheng2ORCID,Gong Huaxin2ORCID,Niu Simiao2ORCID,Yan Xuzhou2ORCID,Zheng Yu3,Shih Chien-Chung2ORCID,Ning Rui1,Lin Qing4ORCID,Li Deling56ORCID,Kim Yun-Hi7ORCID,Kim Jingwan7ORCID,Wang Yi-Xuan2ORCID,Zhao Chuanzhen2ORCID,Xu Chengyi2,Ji Xiaozhou2ORCID,Nishio Yuya4ORCID,Lyu Hao2ORCID,Tok Jeffrey B.-H.2ORCID,Bao Zhenan2ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

2. Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

3. Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

4. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

5. Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA 94305, USA.

6. Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.

7. Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701, South Korea.

Abstract

Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3