Nested epistasis enhancer networks for robust genome regulation

Author:

Lin Xueqiu1ORCID,Liu Yanxia1ORCID,Liu Shuai2ORCID,Zhu Xiang345ORCID,Wu Lingling1ORCID,Zhu Yanyu1ORCID,Zhao Dehua1,Xu Xiaoshu1,Chemparathy Augustine6,Wang Haifeng1ORCID,Cao Yaqiang2ORCID,Nakamura Muneaki1ORCID,Noordermeer Jasprina N.1,La Russa Marie1ORCID,Wong Wing Hung37ORCID,Zhao Keji2,Qi Lei S.189ORCID

Affiliation:

1. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

2. Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute NIH, Bethesda, MD 20892, USA.

3. Department of Statistics, Stanford University, Stanford, CA 94305, USA.

4. Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.

5. Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.

6. School of Medicine, Stanford University, Stanford, CA 94305, USA.

7. Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.

8. Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.

9. Chan Zuckerberg BioHub, San Francisco, CA 94158, USA.

Abstract

Mammalian genomes have multiple enhancers spanning an ultralong distance (>megabases) to modulate important genes, but it is unclear how these enhancers coordinate to achieve this task. We combine multiplexed CRISPRi screening with machine learning to define quantitative enhancer-enhancer interactions. We find that the ultralong distance enhancer network has a nested multilayer architecture that confers functional robustness of gene expression. Experimental characterization reveals that enhancer epistasis is maintained by three-dimensional chromosomal interactions and BRD4 condensation. Machine learning prediction of synergistic enhancers provides an effective strategy to identify noncoding variant pairs associated with pathogenic genes in diseases beyond genome-wide association studies analysis. Our work unveils nested epistasis enhancer networks, which can better explain enhancer functions within cells and in diseases.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3