Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

Author:

Song Tiancheng1ORCID,Cai Xinghan1ORCID,Tu Matisse Wei-Yuan2ORCID,Zhang Xiaoou3,Huang Bevin1ORCID,Wilson Nathan P.1,Seyler Kyle L.1ORCID,Zhu Lin4,Taniguchi Takashi5,Watanabe Kenji5ORCID,McGuire Michael A.6,Cobden David H.1,Xiao Di3ORCID,Yao Wang2ORCID,Xu Xiaodong14ORCID

Affiliation:

1. Department of Physics, University of Washington, Seattle, WA 98195, USA.

2. Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China.

3. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

4. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.

5. National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.

6. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Abstract

An intrinsic magnetic tunnel junction An electrical current running through two stacked magnetic layers is larger if their magnetizations point in the same direction than if they point in opposite directions. These so-called magnetic tunnel junctions, used in electronics, must be carefully engineered. Two groups now show that high magnetoresistance intrinsically occurs in samples of the layered material CrI 3 sandwiched between graphite contacts. By varying the number of layers in the samples, Klein et al. and Song et al. found that the electrical current running perpendicular to the layers was largest in high magnetic fields and smallest near zero field. This observation is consistent with adjacent layers naturally having opposite magnetizations, which align parallel to each other in high magnetic fields. Science , this issue p. 1218 , p. 1214

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 848 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3