Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet

Author:

Belopolski Ilya1ORCID,Manna Kaustuv2ORCID,Sanchez Daniel S.1ORCID,Chang Guoqing1ORCID,Ernst Benedikt2,Yin Jiaxin1,Zhang Songtian S.1ORCID,Cochran Tyler1ORCID,Shumiya Nana1ORCID,Zheng Hao1,Singh Bahadur3ORCID,Bian Guang4,Multer Daniel1,Litskevich Maksim1ORCID,Zhou Xiaoting5ORCID,Huang Shin-Ming6ORCID,Wang Baokai7,Chang Tay-Rong5ORCID,Xu Su-Yang1,Bansil Arun7,Felser Claudia2ORCID,Lin Hsin8ORCID,Hasan M. Zahid1910ORCID

Affiliation:

1. Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ 08544, USA.

2. Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany.

3. SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

4. Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.

5. Department of Physics, National Cheng Kung University, Tainan 701, Taiwan.

6. Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

7. Department of Physics, Northeastern University, Boston, MA 02115, USA.

8. Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.

9. Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA.

10. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Magnetic Weyl semimetals Weyl semimetals (WSMs)—materials that host exotic quasiparticles called Weyl fermions—must break either spatial inversion or time-reversal symmetry. A number of WSMs that break inversion symmetry have been identified, but showing unambiguously that a material is a time-reversal-breaking WSM is tricky. Three groups now provide spectroscopic evidence for this latter state in magnetic materials (see the Perspective by da Silva Neto). Belopolski et al. probed the material Co 2 MnGa using angle-resolved photoemission spectroscopy, revealing exotic drumhead surface states. Using the same technique, Liu et al. studied the material Co 3 Sn 2 S 2 , which was complemented by the scanning tunneling spectroscopy measurements of Morali et al. These magnetic WSM states provide an ideal setting for exotic transport effects. Science , this issue p. 1278 , p. 1282 , p. 1286 ; see also p. 1248

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 363 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3