Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion

Author:

Ren Zhongshu1ORCID,Gao Lin1ORCID,Clark Samuel J.2ORCID,Fezzaa Kamel2ORCID,Shevchenko Pavel2ORCID,Choi Ann34ORCID,Everhart Wes3ORCID,Rollett Anthony D.4ORCID,Chen Lianyi5ORCID,Sun Tao1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA.

2. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.

3. Kansas City National Security Campus Managed by Honeywell Federal Manufacturing and Technologies, US Department of Energy, Kansas City, MO 64147, USA.

4. Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

5. Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA.

Abstract

Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3