Architecture of human Rag GTPase heterodimers and their complex with mTORC1

Author:

Anandapadamanaban Madhanagopal1ORCID,Masson Glenn R.1ORCID,Perisic Olga1ORCID,Berndt Alex1ORCID,Kaufman Jonathan1ORCID,Johnson Chris M.1ORCID,Santhanam Balaji1ORCID,Rogala Kacper B.2ORCID,Sabatini David M.23456ORCID,Williams Roger L.1ORCID

Affiliation:

1. MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.

2. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

4. Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.

6. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Abstract

Mastering regulation The mechanistic target of rapamycin complex 1 (mTORC1) is known as the master kinase, acknowledging its key role in integrating multiple signals to regulate cell growth. When nutrients are abundant, heterodimers of Rag, a class of small guanosine triphosphatase, bind to mTORC1 and recruit it to the lysosome. Here, other signaling pathways converge on the mTORC1 complex. Anandapadamanaban et al. determined cryo–electron microscopy and crystal structures of a RagA/RagC heterodimer. The structures, together with dynamic studies, explain the nucleotide states required for binding to mTORC1 and support a mechanism for conformational communication between the RagA and RagC subunits in the heterodimer. RagA/RagC binding causes no conformational change in mTORC1, which is consistent with the idea that mTORC1 must sense additional growth regulators before it is activated. Science , this issue p. 203

Funder

National Institutes of Health

U.S. Department of Defense

Howard Hughes Medical Institute

American Cancer Society

Saint Catharine's College

Medical Research Council

Cancer Research UK

Lustgarten Foundation

European Molecular Biology Organization

Federation of European Biochemical Societies

Tuberous Sclerosis Association

Company of Biologists

Royal Society of Chemistry

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3