T cell circuits that sense antigen density with an ultrasensitive threshold

Author:

Hernandez-Lopez Rogelio A.12ORCID,Yu Wei1,Cabral Katelyn A.234ORCID,Creasey Olivia A.234ORCID,Lopez Pazmino Maria del Pilar12ORCID,Tonai Yurie1ORCID,De Guzman Arsenia1,Mäkelä Anna5,Saksela Kalle5,Gartner Zev J.23ORCID,Lim Wendell A.12ORCID

Affiliation:

1. Cell Design Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.

2. Center for Cellular Construction, University of California San Francisco, San Francisco, CA, USA.

3. Department of Pharmaceutical Chemistry, Chan Zuckerberg BioHub, University of California San Francisco, San Francisco, CA, USA.

4. Graduate Program in Bioengineering, University of California Berkeley and University of California San Francisco, San Francisco, CA, USA.

5. Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.

Abstract

Designing smarter anticancer T cells Biological signaling systems can exhibit a large, nonlinear—or “ultrasensitive”—response, which would be useful to engineer into therapeutic T cells to allow for better discrimination between cancer cells and normal tissues. Hernandez-Lopez et al. modified human T cells using a two-step mechanism that allowed them to kill cells expressing large amounts of cancer marker protein but not cells expressing a small amount of the same protein. A first synthetic receptor recognized the antigen with low affinity. That receptor signaled to increase expression of a chimeric antigen receptor (CAR) with high affinity for the same antigen. The circuit proved effective in cell culture and mouse cancer models, offering hope of extending the CAR T cell strategy against solid tumors. Science , this issue p. 1166

Funder

National Institutes of Health

Howard Hughes Medical Institute

University of California Institute for Mexico and the United States

National Science Foundation

Pontificia Universidad Católica de Chile

Chan Zuckerberg Initiative

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3