Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination

Author:

Myers Simon12,Bowden Rory12,Tumian Afidalina1,Bontrop Ronald E.3,Freeman Colin2,MacFie Tammie S.4,McVean Gil12,Donnelly Peter12

Affiliation:

1. Department of Statistics, Oxford University, 1 South Parks Road, Oxford OX1 3TG, UK.

2. Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX3 7BN, UK.

3. Department of Comparative Genetics and Refinement, Biomedical Primate Research Center, Lange Kleiweg 139 2288 GJ, Rijswijk, Netherlands.

4. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

Abstract

Homing in on Hotspots The clustering of recombination in the genome, around locations known as hotspots, is associated with specific DNA motifs. Now, using a variety of techniques, three studies implicate a chromatin-modifying protein, the histone-methyltransferase PRDM9, as a major factor involved in human hotspots (see the Perspective by Cheung et al. ). Parvanov et al. (p. 835 , published online 31 December) mapped the locus in mice, and analyzed allelic variation in mice and humans, whereas Myers et al. (p. 876 , published online 31 December) used a comparative analysis between human and chimpanzees to show that the recombination process leads to a self-destructive drive in which the very motifs that recruit hotspots are eliminated from our genome. Baudat et al. (p. 836 , published online 31 December) took this analysis a step further to identify human allelic variants within Prdm9 that differed in the frequency at which they used hotspots. Furthermore, differential binding of this protein to different human alleles suggests that this protein interacts with specific DNA sequences. Thus, PDRM9 functions in the determination of recombination loci within the genome and may be a significant factor in the genomic differences between closely related species.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3