Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function

Author:

Michel Maurice1ORCID,Benítez-Buelga Carlos12,Calvo Patricia A.3,Hanna Bishoy M. F.1ORCID,Mortusewicz Oliver1ORCID,Masuyer Geoffrey45ORCID,Davies Jonathan5ORCID,Wallner Olov1ORCID,Sanjiv Kumar1ORCID,Albers Julian J.1ORCID,Castañeda-Zegarra Sergio16ORCID,Jemth Ann-Sofie1ORCID,Visnes Torkild7ORCID,Sastre-Perona Ana8ORCID,Danda Akhilesh N.1,Homan Evert J.1ORCID,Marimuthu Karthick1,Zhenjun Zhao1ORCID,Chi Celestine N.9,Sarno Antonio10ORCID,Wiita Elisée1,von Nicolai Catharina1ORCID,Komor Anna J.11ORCID,Rajagopal Varshni1,Müller Sarah1ORCID,Hank Emily C.1ORCID,Varga Marek1ORCID,Scaletti Emma R.512ORCID,Pandey Monica113ORCID,Karsten Stella1ORCID,Haslene-Hox Hanne7,Loevenich Simon7ORCID,Marttila Petra1ORCID,Rasti Azita1,Mamonov Kirill1ORCID,Ortis Florian1ORCID,Schömberg Fritz14ORCID,Loseva Olga1,Stewart Josephine1,D’Arcy-Evans Nicholas1,Koolmeister Tobias1,Henriksson Martin1,Michel Dana15,de Ory Ana16,Acero Lucia8ORCID,Calvete Oriol17ORCID,Scobie Martin1ORCID,Hertweck Christian1118ORCID,Vilotijevic Ivan14ORCID,Kalderén Christina1ORCID,Osorio Ana1719ORCID,Perona Rosario219ORCID,Stolz Alexandra20ORCID,Stenmark Pål512ORCID,Berglund Ulrika Warpman1ORCID,de Vega Miguel3ORCID,Helleday Thomas113ORCID

Affiliation:

1. Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.

2. Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029 Madrid, Spain.

3. Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain.

4. Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.

5. Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.

6. Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway.

7. Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway.

8. Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.

9. Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.

10. Department of Environment and New Resources, SINTEF Ocean, N-7496 Trondheim, Norway.

11. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Department of Biomolecular Chemistry, 07745 Jena, Germany.

12. Department of Experimental Medical Science, Lund University, Lund, Sweden.

13. Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.

14. Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany.

15. Chemical Processes and Pharmaceutical Development, Unit Process Chemistry I, Research Institutes of Sweden – RISE, 151 36 Södertälje, Sweden.

16. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.

17. Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.

18. Institute of Microbiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany.

19. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain.

20. Institute of Biochemistry II and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60590 Frankfurt, Germany.

Abstract

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed β,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3